

DOCUMENT CONTROL PAGE

Title:	Central Venous Catheters (CVCs): Guidelines for their management in children		
Version:	6		
Supersedes:	5		
Application:	All Nursing and Medical Staff		
Originated / Modified By:	Holly Kay ¹ , Jacques Diacono ² , Lucy Mumford ¹ , Cora Lahart ³ , Alecia Gillett ³		
Designation:	¹ Paediatric Line Specialist Nurse, ² Consultant Anaesthetist, ³ Paediatric Haemodialysis Sister.		
Ratified by:	RMCH / MCS Policies and Guidelines Group (PGG)		
Date of Ratification:	August 2023		
Issue / Circulation Date:	August 2023		
Circulated by:	RMCH / MCS Policies and Guidelines Group (PGG)		
Dissemination and Implementation:	Available via the MFT Policy Hub		
Date placed on the Intranet:	August 2023		
Planned Review Date:	August 2026		
Responsibility of:	Paediatric Line Specialist Nurse and/or MAGIC team		
Minor Amendment (If applicable) Notified T			
Date notified:			
EqIA Registration Nu	mber: 2023-137		

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 1 of 36
See the Intranet Version Number:6		er:6

Contents

1.	Int	roduction	3
2.	Pu	Irpose	3
3.	Ro	bles and Responsibilities	3
4.	Tra	aining and Competency Assessment	4
5.	Ту	pes of CVCs	4
6.	Са	are of a CVC	5
	6.1	Dressings and Anti-reflux Needle-free Connectors (Neutron device)	5
	6.2	Maintaining Patency	7
	6.3	Blood sampling	7
	6.4	TIVAD Access	8
	6.5	Monitoring and Documentation	8
	6.6	Catheter Removal and Repair	8
	6.7	Complications	9
	6.8	Catheter Associated Skin Impairment (CASI)	9
7.	Eq	uality Impact Assessment	10
8.	Со	onsultation, Approval and Ratification Process	10
9.	Dis	ssemination and Implementation	10
10	. F	Future Plans	10
11	. F	References and Associated Trust Documents	11
12	. /	Appendices	13
	A1	1: Information on Vascular Access Devices	13
	A2	2: Algorithm for Changing a CVC Dressing	15
	A3	3: Algorithm for Changing a Needle-free Connector Device	16
	A۷	4: Algorithm for Procedure of Flushing a CVC	17
	A5	5: Algorithm for CVC Flushing Regime – Device Specific	18
	A6	6: Algorithm for CVC that Does Not Bleed Back	19
	A7	7: Algorithm for Using a CVC to Obtain a Blood Sample	21
	A٤	3: Algorithm for Inserting and Removing a Gripper Needle for a TIVAD	22
	AS	9: Information on Assessment Documentation on HIVE	23
	A1	10: Causes and Management of CVC Complications	24
	A1	11: Algorithm for Mild/Moderate Contamination with bodily fluids	26
	A1	12: Algorithm for Gross Contamination with bodily fluids	27
	A1	13: Management of CASI Types	28
	A1	14: Needle-free connectors and Glass syringe compatibility	29
	A1	15: The Management and Care of Paediatric Central Venous Catheters used for	
	E×	ktracorporeal Therapies	30
		16: Occluded Haemodialysis Catheter Management	
	Su	ummary of Haemodialysis Catheter Occlusion Management	36

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 2 of 36
See the Intranet for latest version Version Number:6		er:6

1. Introduction

This document provides guidance around the care of Central Venous Catheters (CVCs) for all paediatric patients within the Royal Manchester Children's Hospital and Managed Clinical Services.

This document does not cover midlines or intrathecal devices. **Please refer to Appendix 11 and 12 for further information regarding haemodialysis CVCs**.

The MAGiC (Manchester Access Group in Children) service can be contacted for advice and troubleshooting of CVCs Monday to Friday, 08.00-16.00. The team can be accessed through contacting 'MAGiC' on Vocera. The on-call anaesthetist/surgeon should be contacted for advice needed urgently out of hours.

2. Purpose

The purpose of this guideline is to ensure that documented best practice is available in relation to the use, maintenance and removal of CVCs within the Trust. It aims to ensure that standard practice is followed to ensure patient safety and applies to all appropriately trained clinical staff.

3. Roles and Responsibilities

Director of Nursing / Head of Nursing

It is the responsibility of the Director of Nursing/ Deputy Director of Nursing/ Head of Nursing:

- To ensure approval and ratification of this clinical guideline goes through the appropriate professional forum.
- To ensure appropriate dissemination and implementation of this clinical guideline across the Hospital/ MCS.

Lead Nurses/Modern Matrons

It is the responsibility of the Lead Nurses/Modern Matrons:

- To ensure all clinical staff within their clinical areas are aware of this clinical guideline.
- To ensure the operational implementation of this clinical guideline within their clinical areas.
- To ensure all clinical staff are appropriately trained to competently adhere to the clinical guideline.

Ward Manager

It is the responsibility of the Ward Manager:

- To promote awareness of the clinical guideline within their department/ward area.
- To ensure operational implementation of the clinical guideline within their department/ward area.
- To identify and support ongoing training to ensure competent adherence of the clinical guideline.

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 3 of 36
See the Intranet for latest version Version Number		er:6

Clinical/Nursing Staff

It is the responsibility of all clinical staff involved in patient assessment:

- To competently assess CVCs when accessed and/or daily (for inpatients), documenting clearly the outcome of their assessment on the patient's LDA with a VIP assessment
- To understand and apply all aspects of CVC care documented within this guideline.
- To ensure knowledge and competencies are kept up to date and to contact the relevant team for any advice in regard to CVC care if a problem occurs.

Doctors/Non-Medical Prescribers

It is the responsibility of doctors and/or non-medical prescribers to:

- Ensure a thorough assessment of the CVC when concerns are identified/ reported.
- Ensure the care of CVCs in children within the hospital is delivered to the standard of this guideline.
- Ensure prompt referral to the relevant speciality when further support is required

4. Training and Competency Assessment

All nursing staff and allied health professionals who access CVCs must be trained to do so and must undergo a competency assessment before practicing unsupervised.

- The paediatric IV therapy study day must be attended before accessing CVCs. This session provides the theory behind administration of IV drugs and how to safely access CVC devices.
- Staff must then undergo practice under the direct supervision of competent members of staff until deemed appropriate to be signed off as competent. The relevant pages within the IV assessment pack must be completed as evidence of competency.
- All competent staff members must complete a paediatric IV therapy update every three years. In addition, all staff should have an annual aseptic non touch technique (ANTT) assessment please refer to the Trust ANTT Policy (2018) for further guidance.
- New recruits who are already IV competent from a previous Trust should discuss their level of competency with their line manager who will decide what training is appropriate for that staff member.
- No staff member should access CVCs unless they have received training and competency assessment in line with this guideline.

5. Types of CVCs

A CVC is a vascular access device that is inserted into the central venous system with the tip sitting in the superior/ inferior vena cava or right atrium. Catheters are available in single or multiple lumens. All CVCs are inserted in an appropriate setting (theatre, radiology or critical care) using strict sterile precautions. This guideline covers:

- Tunnelled Cuffed Central Venous Catheters (TC-CVCs) these are commonly referred to by their brand names e.g. Hickman, Broviac, Proline, Powerline
- Peripherally Inserted Central Catheters (PICCs)

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 4 of 36
See the Intranet for latest version Version Numb		er:6

- **Totally Implanted Vascular Access Devices (TIVADs)** usually referred to as Ports or 'Portacaths' (brand name) and are accessed by the use of a non-coring needle known as a 'Gripper'.
- Non-Tunnelled Temporary CVCs may be referred to as short-term lines, 'neck' lines, femoral lines or Vascaths.

Central venous access devices will be collectively called CVCs throughout this guideline unless specified otherwise.

The duration and type of therapy that a CVC is needed for will impact on the type of device required. For further information around each device, refer to Appendix 1.

6. Care of a CVC

6.1 Dressings and Anti-reflux Needle-free Connectors (Neutron device)

Excellent standards of CVC care should be adhered to at all times in order to reduce the incidence of catheter-related blood stream infections (CRBSIs) and exit site infections. Strict ANTT procedures will reduce the risk of infection if it is applied in all aspects of ongoing CVC care – please refer to the Trust ANTT Policy (2018) **and Appendix 10**.

Dressings

All CVCs that are external and routinely accessed must have a dressing in situ (apart from TC-CVCs that have been in situ for longer than 6 weeks). The purpose of the dressing is to secure the line and prevent dislodgement as well as reducing the risk of infection. Dressings must be changed every seven days - or sooner if the dressing is soiled or is no longer intact. Please refer to Appendix 2 for a step-by-step guide to changing a CVC dressing.

The dressings required for CVCs as recommended by NICE guidelines (NICE, 2015) are **Tegaderm CHG or Tegaderm IV Advanced Antimicrobial dressings**. These dressings allow for greater observation of the exit site and provide antiseptic coverage which reduces the likelihood of a CRBSI.

Tegaderm IV Advanced or IV 3000 dressings should be used for TIVADs, in patients less than two months old and for any patient identified as having a chlorhexidine allergy.

Safety Loops

Evit Cito

It is recommended that TC-CVCs with a very long external segment should have an appropriate length 'safety loop' at some point in the length of the external section of catheter in order to minimise the risk of dislodgement or removal. Examples of appropriate 'safety loops' are shown below.

Mefix Tape			
	Central Venous Catheters (CVCs): Guidelines children	for their management in	Page 5 of 36
	See the Intranet for latest version	Version Numbe	er:6

PICCs and non-tunnelled temporary catheters do not have an internal cuff and rely on securement either by the use of sutures or a securement device. They are also not subcutaneously tunnelled, therefore they are not suitable for looping and any attempt to do so may cause dislodgement of the line.

After six weeks and if the exit site is healed, a dressing *may* no longer be required for a TC-CVC as the catheter should be secured by the tissue ingrowth to the cuff.

Anti-reflux Needle-free Connectors (NFCs)

All CVCs should have a needle-free connector attached to the end at all times. These devices provide a closed access system and reduce the risk of infection. Currently, the MAGiC services' preferred device is the '**Neutron** Needle-free Neutral Displacement Connector' (ICU Medical UK) device which is used to prevent blood reflux and reduce the incidence of microbial contamination. **All devices must be changed every seven days or sooner if they become contaminated. Refer to Appendix 3**. If unavailable, suitable anti-reflux alternatives are the 'Bionector-TKO To-Keep-Open' (Vygon UK) and the 'NeutroX Neutraclear needle-free connector with anti-reflux valve' (BD UK).

NB. The Neutron NFC is NOT compatible with glass syringes such as prefilled emergency drug glass syringes. Refer to appendix 17.

It is recognised that some patient groups may be at high risk of CVC infections and that using a barrier at the end of the needle-free connector may be beneficial, such as 'Curos Disinfecting Caps' or Parafilm. The manufacturer of Curos Caps applies caution to these caps as a potential choking hazard, however, does not recommend a lower age limit. It is recommended, based on "Policy Statement—Prevention of Choking Among Children" from the American Academy of Paediatrics (2010) that Curos Caps should not be used in children under four years of age.

For children under the age of four years – a suitable alternative to Curos caps for protecting the end of needleless connectors is Parafilm however caution should be applied as Parafilm can be picked off and chewed. Please refer to Appendix 11 for its use.

Octenisan wash

Octenisan wash should be commenced in all hospitalised patients who have an external CVC. Octenisan should be used for whole body washing (incl. hair washing and showering). This should be continued whilst the patient is admitted to help prevent line infections. Please consult the MAGiC team prior to discharge. Oilatum Plus or SkinSan may be used as an alternative to Octenisan if previous sensitivity to Octenisan has been seen.

For patients at increased risk of infection, such as those having a Bone Marrow or Stem Cell Transplant, they should be discharged home with an antimicrobial wash to reduce the risk of line infections once they are no longer an inpatient.

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 6 of 36
See the Intranet for latest version Version Numb		er:6

6.2 Maintaining Patency

In order to maintain optimal CVC function, they require regular and adequate flushing of 0.9% Sodium Chloride. When not in use, all lumens of CVCs should have regular flushes depending on which CVC type to maintain patency. **Refer to Appendices 4 and 5 on how to flush a CVC and for the flushing regimes when a CVC is not in use**.

Blood aspiration is required to confirm CVC patency before every use as it is important to establish that the tip of the CVC is within the central venous system before anything is infused through the catheter. A small free flow 'flashback' of blood into a pre-filled 0.9% Sodium Chloride flush is an acceptable way of checking CVC patency. This can then be flushed back into the system if the syringe has not been disconnected. If a CVC does not aspirate or is showing resistance when flushing, please refer to Appendix 6.

N.B. When accessing a CVC, a 10mL IV syringe should be used at all times. Using smaller syringes on CVCs can cause an increase in pressure which can cause venous damage and catheter rupture. Most clinical areas within RMCH use the 'BD Posiflush SP 5mL' or 'Polyflush 5ml' pre-filled 0.9% Sodium Chloride syringes. These are suitable for use on all CVCs as although the content is only 5mL's, the diameter of the syringe bore is of a 10mL syringe.

TauroLock (Taurolidine and Citrate 4%) can be used as a line lock for:

- Primary prophylaxis for CVCs for patients on long term parenteral nutrition (i.e., patients who are anticipated to require parenteral nutrition for >28 days), and patients who require or have recently had a Bone Marrow or Stem Cell Transplant.
- Secondary prophylaxis for CVCs for patients who have had previous significant line infections. It is instilled into the device lumens between treatments in order to make the internal flow passages resistant to clot formation and hostile to bacterial and fungal growth.

TauroLock should be instilled slowly (not more than 1 mL per second in children over two years of age and in infants and children less than two years of age not more than 1 mL per 5 seconds) into the access device in a quantity sufficient to fill the lumen completely. Unless otherwise stated by the MAGiC team, a **dose of 1mL should be used**. The solution must be withdrawn from the catheter prior to initiating the next treatment.

For patients with Dialysis lines, an alternative to Taurolock for Prophylaxis of line infections is Taurolock HEP500, to be instilled with the volume as stated on each lumen.

6.3 Blood sampling

Blood samples can be taken from all CVCs with the exception of a 2fr PICC due to the internal volume space. It should however be considered prior to blood sampling through a CVC if obtaining blood peripherally would be more appropriate due to the increased risk of CVC occlusion and inaccurate blood test results from medication within the lumen. It should also be considered that excessive central venous blood sampling could compromise a patient's condition e.g., anaemia. **Refer to Appendix 7 on obtaining blood samples from CVCs.**

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 7 of 36
See the Intranet for latest version Version Numb		er:6

6.4 TIVAD Access

Only staff who have been assessed as competent in the IV assessment pack for the use of TIVADs should access these devices. TIVADs should always be accessed using a non-coring Gripper needle to prevent damage to the septum of the device. If the Gripper is staying insitu, it requires changing at least weekly. **Refer to Appendix 8 for a guide on inserting and removing Gripper needles.**

6.5 Monitoring and Documentation

All CVCs must be monitored closely and an appropriate IV care plan such as the 'Visual Inspection Phlebitis' (VIP) score should be utilised for all patients with a CVC in situ. The use of this tool will allow staff to recognise early signs of complications, as well as monitor when dressing and needle-free connector changes are due. VIP should be recorded on HIVE 12 hourly, including when the dressing and Needle-free connector has been changed.

N.B. VIP is an adult based tool, and its suggested actions should be used as guidance only. It is recommended that medical staff are contacted immediately if there are any concerns regarding a CVC or if it is scoring above zero on VIP.

Refer to Appendix 9 for further information on the correct use of the VIP tool.

6.6 Catheter Removal and Repair

All staff must continuously assess the need for a CVC and consider removing it if it is no longer needed. Some examples of when a CVC should be removed are:

- A proven and unresolved CRBSI
- End of treatment/therapy
- Faulty/broken device
- Thrombosis
- Occlusion that has not resolved with treatment

Non-tunnelled CVCs, including PICCs, may be removed on a ward area without the need for anaesthetic. This should only be done by an experienced and competent professional in order to maintain patient safety. Staff can refer to the RMCH 'Standard Operating Procedure for Healthcare Professionals: Procedure for Removing a Non-Tunnelled Central Venous Catheter (CVC) including the SecurAcath device (2020)' for more information and should complete a competency document for removal of these devices before undertaking this task.

Tunnelled CVC removal usually requires a general anaesthetic and removal in theatre by surgical/anaesthetic staff.

Occasionally, an external section of a TC-CVC may split or break off. Staff should ensure that any associated medical emergency is dealt with immediately (e.g., bleeding) and that the line is made safe promptly. The CVC should be clamped using blue clamps above and below the breakage over sterile gauze. Some TC-CVCs have bespoke repair kits and

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 8 of 36
See the Intranet for latest version	Version Number	er:6

should only be used by appropriately trained members of staff – usually medical staff or specialist nurses.

6.7 Complications

There are multiple possible complications that can result from the presence of a CVC. These include infection, dislodgement, accidental removal, occlusion and/or thrombosis, extravasation and air embolism. **Refer to Appendix 10 for the causes and management of these complications**.

Lines are also at risk of being contaminated by bodily fluids, increasing the risk of Line Infections. This is classified as Mild, Moderate and Gross. Refer to Appendices 11-12 for decontamination instructions.

6.8 Catheter Associated Skin Impairment (CASI)

Many paediatric patients relying on a CVC for treatment are complex and have conditions which impair on the skin surrounding a CVC exit site (e.g., nutritional deficiencies, haematology / oncology disorders), resulting in an increased likelihood of skin damage.

The following standard prevention techniques should be employed for <u>all</u> patients with a CVC as part of usual CVC maintenance as well as enhanced strategies for patient groups deemed high risk:

- 1. Use of medical adhesive remover for all dressing changes (Apeel® wipes/liquid sachet/spray)
- 2. Ensure the skin surrounding CVC exit site is always left to dry completely after cleaning during CVC care, prior to application of a new dressing

In addition, for the following patient groups, use a Sterile Barrier Film Applicator such as 'Medi Derma – S barrier film applicator', on skin <u>surrounding</u> the exit site prior to application of a new dressing:

- Graft versus host disease (GvHD)
- Patients < 2 months old
- Burns
- Severe eczema
- Congenital hyperinsulism (CHI)

CASI can be categorised into several different types. It is important that a CVC site is assessed at least daily and after identification of a suspected CASI type, appropriate strategies are put into place for the patient to manage and protect the skin from further damage. **Refer to Appendix 11 for management of CASI types.**

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 9 of 36
See the Intranet for latest version Version Number		er:6

7. Equality Impact Assessment

Equality Impact Assessment

Please record the decision whether the policy, service change or other key decision was assessed as relevant to the equality duty to:

- Eliminate discrimination and eliminate harassment
- Advance equality of opportunity
- Advance good relations and attitudes between people

Not relevant	Relevant		
Where the decision was NOT RELEVANT, please record the reason for the decision below	Where the decision was RELEVANT, please record details of the outcome of the full impact assessment and summarise the actions that will be taken to eliminate or mitigate adverse impact, advance equality or justification for the impact.		of the outcome of sment and is that will be taken te adverse impact,
Please enter the EqIA registration Number:		2019-36	0

8. Consultation, Approval and Ratification Process

The RMCH Polices and Guidelines Group have been consulted on the guideline as well as paediatric representatives from: surgical, anaesthetics, gastroenterology, critical care, IV therapy, tissue viability and Wythenshawe.

PMMC have approved the medicines-related components of this guideline.

Approval will be sought at the RMCH/MCS Quality and Safety Committee.

This guideline will be reviewed every three years by the RMCH/MCS Quality and Safety Committee.

9. Dissemination and Implementation

This guideline will be disseminated via the Clinical Effectiveness team and published on the Trust's Intranet site in the paediatric clinical handbook.

10. Future Plans

• Review CRBSI rates and methods of reduction.

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 10 of 36
See the Intranet for latest version Version Number		er:6

11. References and Associated Trust Documents

References

American Academy of Paediatrics (2010) 'Policy Statement – Prevention of choking among children', *Pediatrics*, 123(3), pp. 601-607.

Association of Anaesthetists of Great Britain and Ireland (AAGBI) (2016) 'Safe vascular access', *Anaesthesia*, 71, pp. 573-585.

Bard (2016), Nursing Procedure Manual - HICKMAN®, LEONARD® and BROVIAC® Central Venous Catheters. Available at: https://www.crbard.com/CRBard/media/ProductAssets/BardPeripheralVascularInc/PF1002

3/en-US/3jcc8agei2m774743ywxhe3tq54ks3bi.pdf [Accessed: 23rd August 2019].

Loveday, H.P *et al* (2014), 'epic3: national evidence-based guidelines for preventing healthcare-associated infections in NHS hospitals in England', *Journal of Hospital Infection*, 86(1), pp. 1-70.

<u>Management of Central Venous Access Device-Associated Skin Impairment – An</u> <u>Evidence-Based Algorithm. Daphne Broadhurst, Nancy Moureau, Amanda J. Ullman,</u> <u>World Congress of Vascular Access (WoCoVA) , Skin Impairment Management Advisory</u> <u>Panel</u> (2017)

National Institute for Health and Care Excellence (2015), *The 3M Tegaderm CHG IV* securement dressing for central venous and arterial catheter insertion sites. (Medical technologies guidance 25). Available at:

https://www.nice.org.uk/guidance/mtg25/chapter/1-Recommendations [Accessed 23rd August 2019].

Royal College of Nursing (2016) 'Standards for Infusion Therapy', 4th edn. London:RCN.

Stenger, E *et al* (2019) 'Application of Parafilm as a Physical Barrier on CVC Connections is Feasible and May Reduce CLABSI Among Paediatric HCT Patients', *Biology of Blood and Marrow Transplantation*, 25(3), pp. 131.

Summary of Product Characteristics (SPC) CareFusion UK (2016) 'Chloraprep'. Available at: <u>https://www.medicines.org.uk/emc/product/6670/smpc</u> [Accessed 23rd August 2019].

For Appendices 11-12:

National Kidney Foundation. KDOQI Clinical Practice Guidelines for Hemodialysis Adequacy: 2015 Update. *Am J Kidney Dis* 2015;66(5):884-930.

Paediatric Formulary Committee. British National Formulary for Children (online) London: BMJ Group and Pharmaceutical Press. Available from: http://www.medicinescomplete.com (accessed 05 August 2019)

Guy's and St. Thomas', King's College and University Hospital Lewisham. Paediatric Formulary 9th Edition. London: Guy's and St. Thomas' NHS Foundation Trust, 2012. Available from:

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 11 of 36
See the Intranet for latest version	Version Number:6	

https://www.guysandstthomas.nhs.uk/resources/publications/formulary/paediatricformulary-9th-edition.pdf (accessed 05 August 2019)

Wang AY, Ivany JN, Perkovic V, Gallagher MP, Jardine MJ. Anticoagulant therapies for the prevention of intravascular catheters malfunction in patients undergoing haemodialysis: systematic review and meta-analysis of randomized, controlled trials. Nephrol Dial Transplant 2013;28(11):2875-88.

Rees L, Webb NJA and Brogan PA. Paediatric Nephrology. In: *Oxford Specialist Handbook in Paediatrics 2nd Edition*. Oxford: Oxford University Press, 2012.

Besarab A, Pandey R. Catheter Management in Hemodialysis Patients: Delivery Adequate Flow. *CJASN* 2011;6(1):227-34.

Strazdins V, Watson AR, Harvey B. Renal replacement therapy for acute renal failure in children: European Guidelines. *Pediatr Nephrol* 2004;19(2):199-207.

Great Ormond Street Hospital for Children. Central venous access devices (long term). Great Ormond Street Hospital for Children NHS Foundation Trust. Available from:

Dougherty L and Lister S (Editors). *The Royal Marsden Manual of Clinical Nursing Procedures 7th Edition*. Chichester: Wiley-Blackwell, 2008.

Hilleman D, Campbell J. Efficacy, safety, and cost of thrombolytic agents for the management of dysfunctional hemodialysis catheters: a systematic review. *Pharmacotherapy* 2011;31(10):1031-40.

Chamblee T, Patton L, Young V, Marusich J, Bowens C, Miles D. Reducing Central Line Associated Bloodstream infection in contaminated Central Venous Catheters: case studies of a paediatric contamination guideline. *British Journal of Nursing* 2021 Vol 30, No 19

Associated Trust Documents

Aseptic Non-Touch Technique (ANTT) Policy: (2023)

MFT, RMCH, Central Venous Catheters – Information for schools and nurseries. TIG 71/12 (August 2012).

Managing Phlebitis and Extravasation in Paediatrics Policy (2019)

Standard Operating Procedure for Healthcare Professionals: Procedure for Removing a Non-Tunnelled Central Venous Catheter (CVC) including the SecurAcath device (2023)

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 12 of 36
See the Intranet for latest version	et for latest version Version Number:6	

12. Appendices

A1: Information on Vascular Access Devices

Tunnelled Cuffed Central Venous Catheters (TC-CVCs)

- Surgically tunnelled through subcutaneous tissue from the exit site on the anterior chest wall. This process of insertion as well as a small cuff on the CVC that embeds internally will improve stability and reduce the likelihood of infection.
- Option of a single lumen or double lumen.
- Can be used for all long-term IV therapy (e.g., chemotherapy, PN, antibiotics, blood sampling, and bone marrow transplant).
- Usually requires full general anaesthesia for insertion and removal.
- Cannot be fully submerged in water, therefore swimming and baths are not permitted.
- May not be a good option if therapy only requires access intermittently due to continuous risk of line infection and damage.
- Can damage the long-term patency of the central veins.
- Requires ongoing care when not in use including weekly flushes, dressing and needle free connector changes.

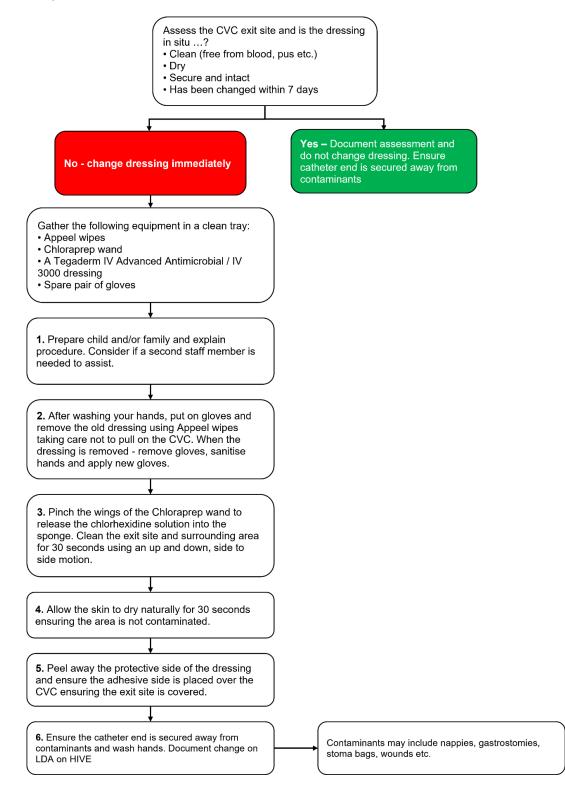
Peripherally Inserted Central Catheters (PICCs)

- Directly inserted into a peripheral vein, usually in the upper limb with the tip advanced into the central venous system.
- May be inserted using local anaesthesia but usually requires a general anaesthetic in young children.
- Can be removed easily without any need for anaesthetic.
- The insertion procedure carries less risk than other CVCs however they can be technically difficult to insert.
- Used for mid to long-term therapy, usually for a few months (e.g. antibiotics, antivirals, blood sampling, chemotherapy, TPN). PICCs can be used for as long as the device is operational – they do not need removing after a certain time period.
- Usually do not affect the patency of the central veins.
- Can be beneficial for children with poor/difficult peripheral venous access.
- Requires ongoing care when not in use including weekly flushes, dressing and needle free device changes.
- Cannot be fully submerged in water, therefore swimming and baths are not permitted.

Totally Implanted Vascular Access Devices (TIVADs)

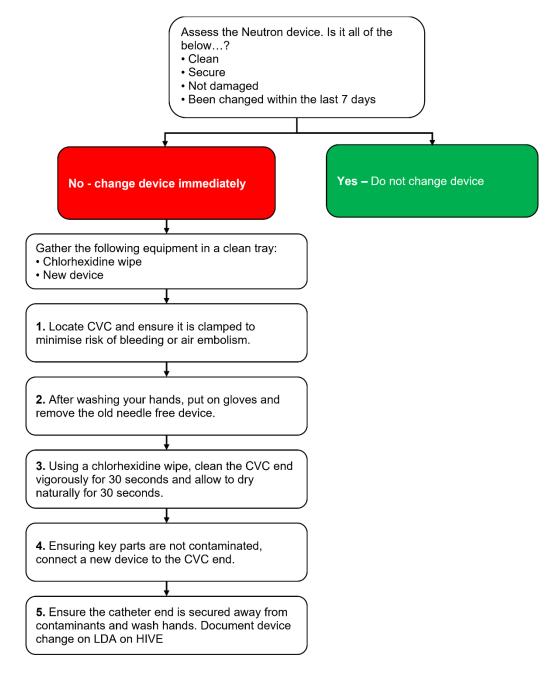
- The device is implanted in the subcutaneous tissue of the antero-lateral chest wall with the catheter tunnelled to a large central vein.
- TIVADs are used for long term intermittent venous access. A good option for long term intermittent therapy (e.g., chemotherapy) and for conditions with intermittent access requirements (e.g., cystic fibrosis).
- Lowest risk of infection among all CVCs as there is no external portion when it is not in use.

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 13 of 36
See the Intranet for latest version	Version Number:6	

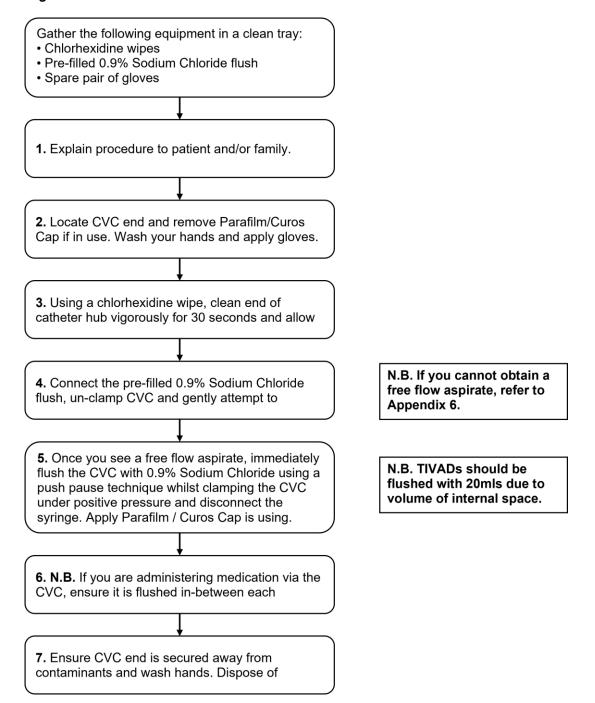

- An option in a child who is very active or likely to pull/damage an external line.
- When not in use, requires a flush to maintain patency every 8-12 weeks.
- Once the wound from initial insertion site is healed, patients are able to submerge in water when the TIVAD is de-accessed.
- Usually requires general anaesthesia for all insertions and removals.
- Accessing a TIVAD requires needle insertion so consider children who are needle phobic.
- Usually, single lumen only.
- Not a good option if the device needs continuous access because of erosion of the skin and increased risk of infection e.g., long term PN.
- Can damage the long-term patency of central veins and if a TIVAD becomes infected, it can be much harder to clear the infection in comparison to other CVCs.

Non-Tunnelled Temporary CVC

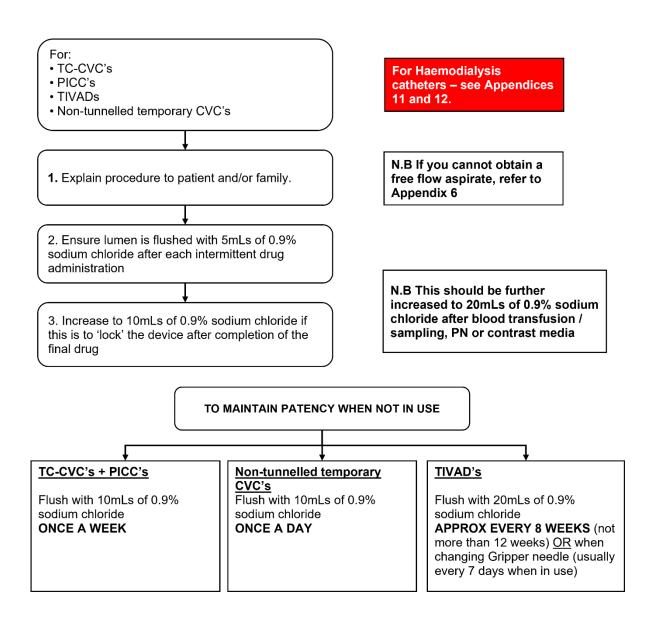
- Inserted percutaneously but without tunnelling or a cuff and the tip of the line lies centrally. The line is inserted directly into a central vein i.e. internal jugular, subclavian or femoral.
- Usually inserted at the bedside in paediatric critical care where a child needs multiple venous access points or in theatre.
- Useful for children who need continuous/frequent venous access for a short period of time especially in critically ill children. Indications may include multiple IV medications or fluids, central monitoring of pressures or short-term requirement of central access i.e., inotropes.
- Can be removed easily without any need for anaesthetic.
- Ideally should be in situ for no longer than 7-14 days.
- They are at a higher risk of infection and occlusion than other CVCs.


Central Venous Catheters (CVCs): Guidelines for their management in children		Page 14 of 36
See the Intranet for latest version Version Number:6		er:6

N.B. This algorithm refers to dressing changes for PICCs, TC-CVCs and non-tunnelled temporary CVCs. For TIVADs – please refer to Appendix 8 (for changing gripper needle etc.)


Central Venous Catheters (CVCs): Guidelines for their management in children		Page 15 of 36
See the Intranet for latest version Version Number		er:6

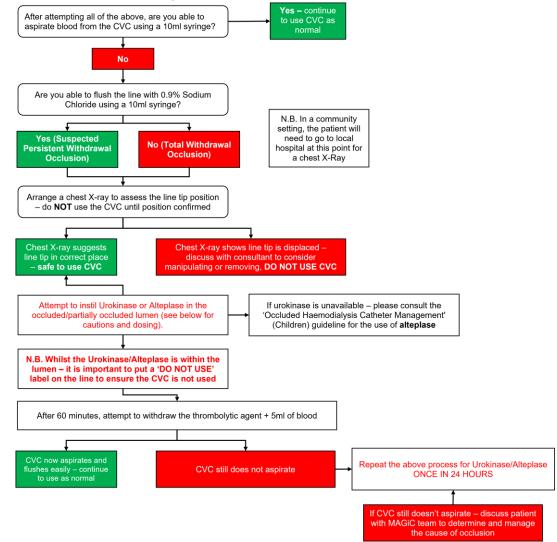
N.B. This algorithm refers to Neutron devices however the principle for changing any needle free connector device is the same.


Central Venous Catheters (CVCs): Guidelines for their management in children		Page 16 of 36
See the Intranet for latest version Version Number:6		er:6

N.B. CVCs should be flushed with 0.9% Sodium Chloride each time they are accessed to maintain patency. In addition, CVCs that aren't being accessed frequently must be flushed within certain timeframes to prevent line occlusion –see 'Algorithm 5 for CVC flushing regime'.

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 17 of 36
See the Intranet for latest version Version Number		er:6

N.B. There may be exceptions to this algorithm for neonatal patients or those with fluid restrictions – please discuss these patients with the medical team.



(Central Venous Catheters (CVCs): Guidelines for their management in children		Page 18 of 36
	See the Intranet for latest version	Version Number:6	

N.B. There may be exceptions to this algorithm for temporary non tunnelled CVCs – please seek local guidance from paediatric critical care. For long-term CVCs that have previously not bled back – please discuss patient with MAGiC team before commencing treatment.

If you are not able to get a freeflow aspiration of blood on accessing a CVC, you should initially attempt all of the following:

- Ensure there is no evidence of mechanical obstruction (e.g., line clamped, kinked or twisted – this could be under the dressing and thus changing the dressing may resolve the problem)
- Ask the patient to cough, move their arms or change position.
- Change the Neutron device.
- Attempt to flush the CVC with 2-3mls of 0.9% Sodium Chloride (do not force this if the line feels occluded)

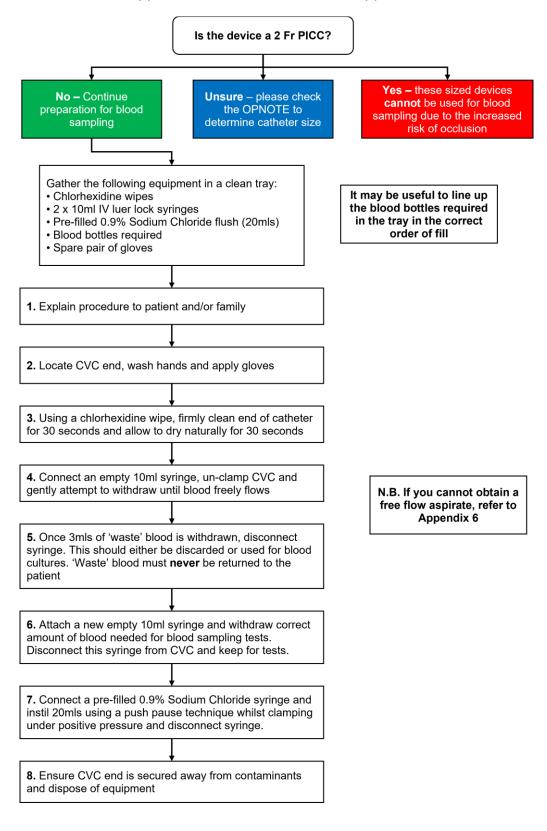
Central Venous Catheters (CVCs): Guidelines for their management in children		Page 19 of 36
See the Intranet for latest version Version Number:6		er:6

Caution should be exercised in using a fibrinolytic agent with patients who:

have any condition for which bleeding constitutes a significant hazard.

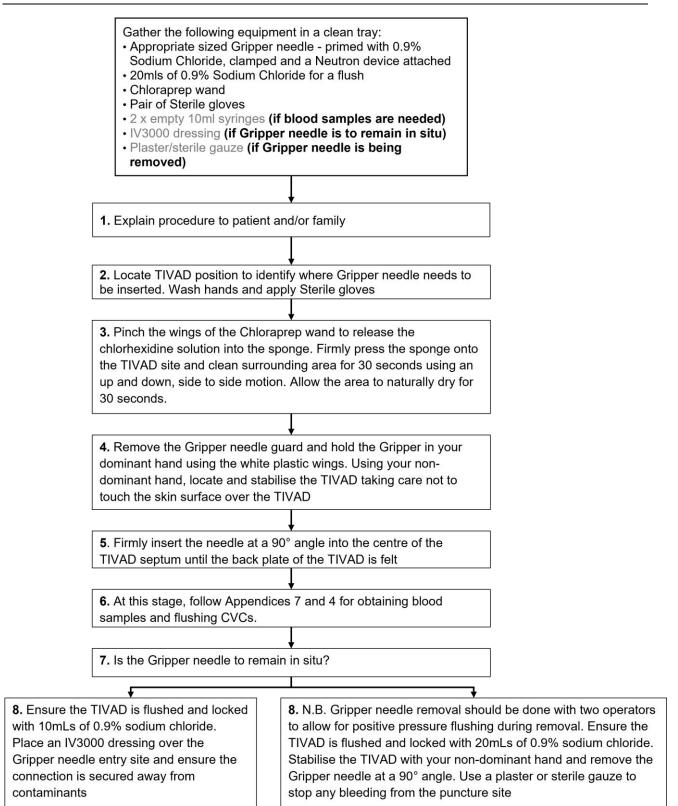
- have had recent severe bleeding
- have had recent major trauma
- have active ulcerative GI disease
- have had a recent stroke
- are receiving warfarin therapy where INR > 1.3
- have had heparin administered on same day or APTT > 45
- have a platelet count < 80

Attempt to instil Urokinase 5000units/ml or Alteplase 1mg/ml and leave for 60 minutes (use a three-way tap if lumen occluded – consult MAGiC team for further advice).


Dosing of Urokinase 5000units/ml or Alteplase 1mg/ml:

PICCs, Tunnelled / Non-tunnelled CVCs: > 1 year = 1 mL and < 1 year = 0.5 mL (each blocked lumen)

TIVADs/Ports: 1ml (some patients with 'adult' size ports may require larger doses – discuss with MAGiC team).


Central Venous Catheters (CVCs): Guidelines for their management in children		Page 20 of 36
See the Intranet for latest version	Version Number:6	

N.B. This algorithm is presuming a TIVAD is already accessed with a Gripper needle. Please refer to Appendix 8 for how to insert a Gripper needle.

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 21 of 36
See the Intranet for latest version Version Number:6		er:6

A8: Algorithm for Inserting and Removing a Gripper Needle for a TIVAD

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 22 of 36
See the Intranet for latest version	Version Number:6	

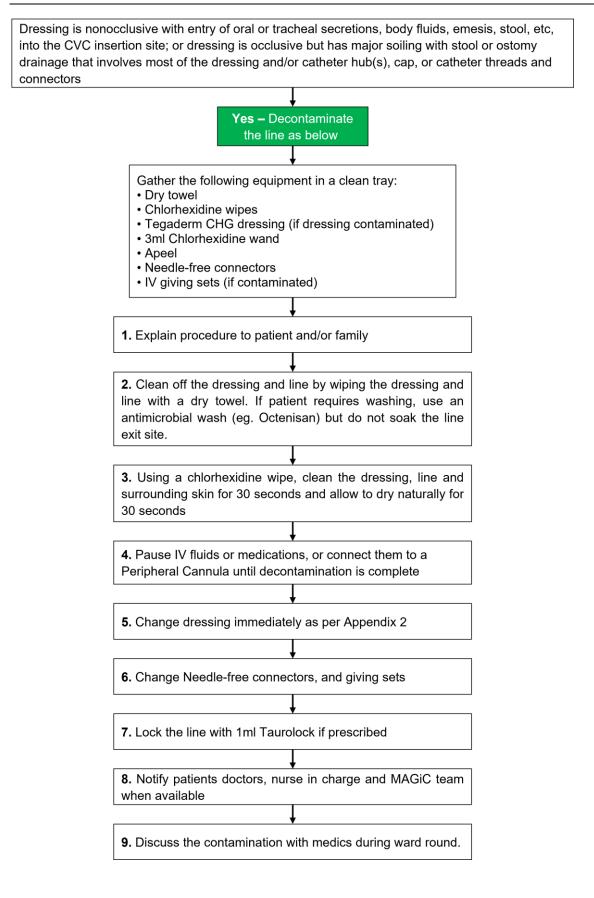
Line assessment accessed through the LDA in HIVE

Assessment					*
Time taken: 10/1/2023	13:41	Responsible More	e • Shov	v Row Info 🗌 Show Last Filed V	/alue 🗌 Show All Choices
Placed: 19/12/2022 1 Insertion Checklist/Hyg Amount of Lumen: 1 Show all properties Site Care	1:00 iene technique used: A	NTT	Present on Arrival Size (Fr): 4 Length (cm): 45	to Hospital: No	
Not assessed	Infusing	Leaking	Positional	Occluded	V D
Blood return noted	ANTT used	Cleaned	Flushed	Clamped	
Heparin locked	Lab draw	Signs of erythema	Other (Comment	t)	
Site assessment Healthy Pain Oedema Pyre		ling/Hardness 🗌 Fluid L	eakage 🗌 Exudate	/Pus 🗌 Crusting 🗌 Expose	ed Cuff 🔍 🗋
VIP score					
Length mark (cm)					
Dressing Type					
Transparent	Semi-Transparent	Gauze	CHG Dressing	Securing device	V D
Peripheral line	Mefix	Tesio	Other (comment)		
Dressing Status					
Clean	🗌 Dry	Looped & Secure] Mild oozing	Moderate oozing	V D
Removed	Soiled	Other (Comment)			
Dressing Intervention	n				
ANTT adheared to	Dressing change	d Dressing reinforce	ed Removed	Other (comment)	D
Dressing Change Du	le		Giving set line	e change due date	
	i v D			i v D	
Valve Change Due E	Date (7 days)				
					✓ Accept X Cancel

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 23 of 36
See the Intranet for latest version	Version Number:6	

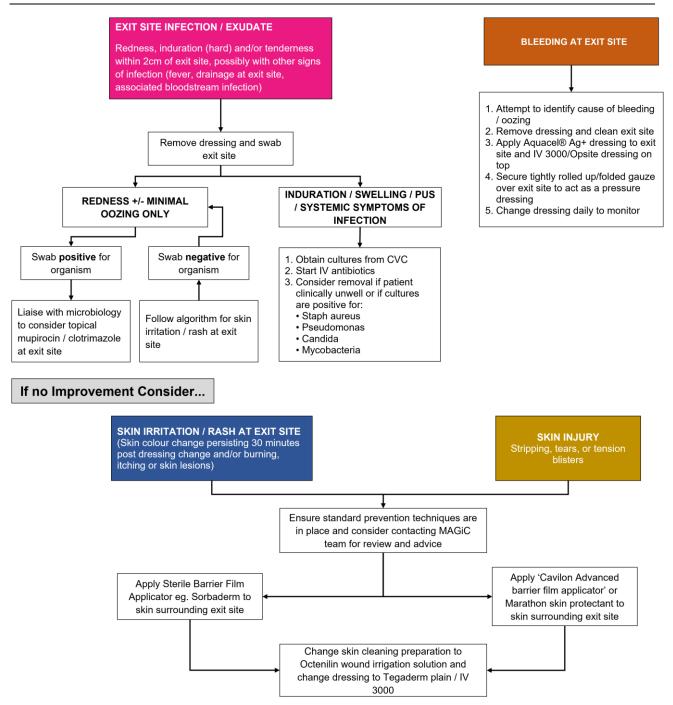
Complication	Possible Causes	Management
Infection	Usually either from	Patients with a suspected CRBSI should
	contamination of the catheter	have the following:
	hub or organisms on the	 Blood cultures from the CVC
	patient's skin surface.	 Peripheral blood cultures
	Infection may also be due to	Swab of the exit site
	bacterial translocation of	Depending on the clinical state of the
	organisms.	patient and the organism grown will
		depend on which antibiotic regime is
		indicated or if the CVC needs to be
		removed.
Dislodgement/	If the CVC is not secured	Dislodgement may be suspected if:
Migration of CVC	appropriately, it is possible for the catheter to move in and out	The external length of the catheter
tip	the exit site and therefore the tip	changes
	can become dislodged.	 The cuff of a tunnelled line becomes visible at the exit site
	Changes in intrathoracic	 Inability to aspirate or flush a CVC
	pressure, coughing, sneezing	 Signs of extravasation or pain when
	and excessive vomiting can also	flushing the CVC
	lead to migration of the line tip.	Cardiac arrhythmias
		If any of these signs of dislodgement
		occur, a chest X-ray is needed to
		determine the line tip position.
Accidental	CVCs that have an external	All staff and family members that care for
removal	length of catheter are	children with a CVC should be aware of
	susceptible to accidental	management of accidental removal as it
	removal. This can be from	can happen at any point.
	pulling or catching on something	As soon as it is recognised that a CVC
	 although securement devices and internal cuffs endeavour to 	has accidentally come out, pressure must
	prevent this, it is a recognised	be applied, ideally with sterile gauze, at
	risk.	the exit site and the side of the neck (for
		tunnelled CVCs). This will stop bleeding
		and reduce the risk of infection at the exit
		site. An incident form should be
		completed, and a medical review
Occlusion (partial	Mechanical occlusions such	requested. May be treatable with thrombolytic agent
or total) and/or	as clamps, kinking or twisting	or line may need replacing /
thrombosis	of the catheter.	manipulating.
	 Intraluminal occlusion 	1 5
	Extraluminal occlusion	Please see Appendix 6.
	Catheter related sheath	
	Line tip abutting vein wall	
Extravasation	When the catheter tip displaces	Stop the infusion immediately and notify
	and is no longer in the vein. See	doctor. Refer to 'Managing Phlebitis and
	above causes for	Extravasation in Paediatrics' policy.
	dislodgement/migration of CVC	Usually, a chest X-ray will be needed to
	<i>tip.</i> Extravasation can also occur	determine the line tip position.
	due to needle displacement	
	when accessing a TIVAD.	idalinaa far thair managament in
	Central Venous Catheters (CVCs): Gu childre	n Fage 24 01 30
	See the Intranet for latest version	Version Number:6

Air embolism	A serious complication caused by the presence of air in the vascular system. This could occur during insertion or use of CVCs. Preventative measures should include removing all air from syringes and infusion sets before attaching to the patient as well as using clamps and needle free access devices.	Symptoms may include shortness of breath, altered conscious levels, chest pain and low cardiac output. If suspected – seek urgent medical assistance immediately. Turn the patient onto their left side and place them in the Trendelenberg (head down) position and administer oxygen.
--------------	--	--


Central Venous Catheters (CVCs): Guidelines for their management in children		Page 25 of 36
See the Intranet for latest version	net for latest version Version Number:6	

A11: Algorithm for Mild/Moderate Contamination with bodily fluids

Dressing is intact; line entry sites not contaminated; no contamination of catheter hub(s), cap(s), or catheter threads or connectors, and the fluid is on less than 25% of the dressing (ie a small amount of food spills on the top of the dressing; a baby spits up, and a little gets on the edge of the dressing) OR Contamination from emesis, gastric, urine, or oral secretions involves most of the dressing and/or involves any part of the catheter hub(s), cap, or catheter threads or connectors Yes – Decontaminate the line as below Gather the following equipment in a clean tray: Dry towel Chlorhexidine wipes Tegaderm CHG dressing (if dressing contaminated) 3ml Chlorhexidine wand Apeel Needle-free connectors · IV giving sets (if contaminated 1. Explain procedure to patient and/or family 2. Clean off the dressing and line by wiping the dressing and line with a dry towel 3. Using a chlorhexidine wipe, clean the dressing, line and surrounding skin for 30 seconds and allow to dry naturally for 30 seconds 4. Pause IV fluids or medications, or connect them to a Peripheral Cannula until decontamination is complete 5. Change dressing immediately if the dressing was contaminated as per Appendix 2 6. Change Needle-free connectors, and giving sets if any part of them was contaminated 7. Notify patients doctors, and the nurse in charge 8. Discuss the contamination with medics during ward round.


V		r.	
MZ.		L	
	Υ.	L	7
	- 1	υ	٢.

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 26 of 36
See the Intranet for latest version	n Version Number:6	

Central Venous Catheters (CVCs): Guidelines children	for their management in	Page 27 of 36
See the Intranet for latest version Version Number:6		er:6

A13: Management of CASI Types

These recommendations are based on an evidence-based algorithm from representatives of the World Congress of Vascular Access (2017). It is recognised that patients will have to be assessed and managed on an individual basis – please contact the MAGiC team for further advice.

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 28 of 36
See the Intranet for latest version	Version Number:6	

After introduction of the Neutron NFC, it was recently noted that this device is incompatible with some glass syringes. This was not initially highlighted by the manufacturer, but has since been updated on their product literature within the last year. The National Infusion and Vascular Access Society (NIVAS) UK has released a statement this year saying that not all needle free connectors are Aurum glass syringe prefilled emergency drug compatible, and that NIVAS is still working with MHRA and NHS to reach a solution.

The MHRA issued MDA/2004/005 to raise awareness of incompatibility between some needle-free connectors and Luer tips of pre-filled syringes. The MHRA continues to receive reports of damage to the needle-free connector and/or to the pre-filled syringe where force has been used to connect incompatible devices together. In some cases, fragments may block the syringe outflow. Such damage has resulted in a delay in administering therapy during the resuscitation of patients.

In 2011, The U.S. Food and Drug Administration (FDA) alerted the healthcare community about syringe connection problems when certain needleless glass syringes containing the cardiac drugs adenosine and amiodarone are used with particular types of intravenous (IV) access systems. They stated that the use of needleless pre-filled glass syringes in emergency situations should be avoided, if possible.

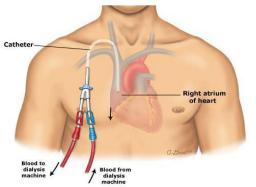
However, even if used with *compatible* NFCs, glass syringes still pose risks to patients due to the risk of nozzle fracture during connection or disconnection to NFCs: The consequences of nozzle fracture during emergency use include: loss of intravenous access, failure of critical drug administration and harm to the operator or patient from shattered glass fragments, which could potentially include intravenous administration of broken glass (https://associationofanaesthetists-

publications.onlinelibrary.wiley.com/doi/full/10.1111/anae.13287 AAGBI 2015 correspondence).

It is rare in paediatrics to use the entire contents of a glass filled syringe in an emergency. Also, it is not always possible to know if a particular NFC is compatible with glass syringes or not. **Thus, we would recommend NOT to directly connect glass syringes to NFCs.** In an emergency we would suggest one of the following :

- 1. Decant the correct dose of drug to a plastic syringe using a 3-way tap, ensuring accurate dosing for children (preferred method)
- 2. Connect a short IV extension to the glass syringe, and then connect and disconnect the extension to the NFC when required
- 3. Remove the NFC and carefully connect directly to the catheter hub

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 29 of 36
See the Intranet for latest version Version Number:6		er:6


A15: The Management and Care of Paediatric Central Venous Catheters used for Extracorporeal Therapies

Originated / Modified By: Cora Lahart ¹ and Alecia Gillett ² Designation: ¹ and² Paediatric Haemodialysis Sister

Introduction

A bespoke CVC is a device used for extracorporeal therapies such as haemodialysis / haemodiafiltration, haemofiltration, lipid and plasma apheresis, extracorporeal photopheresis (ECP), peripheral blood stem cell collection (PBSC) and red cell. They have larger internal lumens than other CVCs and often have side holes to improve flow rates into and out of the catheter.

The tip of the CVC sits in either the right atrium, superior vena cava or the inferior vena cava depending on the device used and the patient's clinical situation. CVCs in the right atrium will usually provide higher flow rates than those positioned in the vena cava.

(Figure 1: Image showing catheter placement)

Method

During dialysis and extracorporeal therapies, blood is taken from the patient via the CVC, filtered and administered directly back through the CVC. The removal and readministration of blood may be continuous if the patient has two lumens/two lines or will be cyclic if they only have a single lumen CVC i.e., an output cycle followed by an input cycle each lasting a set number of seconds.

During dialysis blood will always need to be withdrawn via the CVC therefore it is essential that full patency is maintained and that the CVC is checked for efficient blood withdrawal prior to use.

Complications

Withdrawal occlusion must be reported to medical staff and dealt with promptly so that the CVC can maintain its role in dialysis. If only one line/lumen of the dialysis CVC has full infusion and withdrawal patency, but the second line/lumen has withdrawal occlusion it may still be possible to use the device for dialysis, but improved patency of the compromised line/lumen must be pursued.

For full guidance on occlusion of these devices, refer to Appendix 12.

children		Page 30 of 36
See the Intranet for latest version	Version Number:6	

Action	Rationale
CVC dressings to be changed weekly or	To monitor for and reduce the risk of exit
sooner if soiled.	site infections
Principles of Aseptic Non-Touch	To reduce risk of infection
Technique (ANTT) must be used for	
dressing changes	
After removing the dressing, site must be	To minimise risk of exit site infections.
cleaned with ChloraPrep or suitable	NB: ChloraPrep cleaning is not effective
alternative if allergic to Chlorhexidine	unless it has air dried
If skin is broken, 0.9% Sodium Chloride	To minimise discomfort and protect skin
and sterile gauze can be used for cleaning.	integrity.
Site must be dried before re-dressing	
CHG (chlorhexidine gluconate) dressing	CHG dressing should be used to cover
should be applied over the exit site.	and protect exit sites as it acts as a barrier
	against external contamination and has an
	integrated gel pad containing an antiseptic
	agent.
If patient has a CHG allergy/reaction the CH	G dressing the following should be used*:
*Biopatch' (Chlorhexidine infused disk)	To minimise risk of exit site infections
should be placed around the line at the exit	
site.	
*'Biopatch' information	http://cmft-sp-
	wfe/sites/departments/paediatriccriticalcar e/PublishingImages/Biopatch%20Video%20 1.mp4
*'Grip-Lok' line anchor should be placed	To anchor the line to reduce risk of line
around the hub and fixed to the skin	dislodgement
*IV 3000 dressing should be used to cover	An IV 3000 dressing should be used as it
the exit site and Griplok	has a greater moisture vapour
·	transmission capability component than
	other film dressings available
Parafilm:	Evidence suggests that using a protective
Protect hubs by wrapping in parafilm.	barrier around the hub and the connection
Wash hands	of a central venous catheter is an effective
Cut a 5cm square of parafilm.	preventative measure against
Wipe Tego bung and the hub of the CVC	contamination and infection.
with a 2% Chlorhexidine/70% alcohol wipe	If this area is left conteminated or maint
(Clinell [®]) for 30 seconds to dry.	If this area is left contaminated or moist,
Remove the paper backing and stretch the	sealing with Parafilm could create a
Parafilm over the hub. Mould the parafilm	breeding ground for Microorganisms.
to form an airtight seal as illustrated below.	The seal should be airtight to prevent
Alle a literation	contamination.
All - All	
$\langle \langle \langle \rangle \rangle = \langle \rangle \langle \rangle \rangle $	
To remove, pull parafilm from hub. DO	
NOT USE SCISSORS. Clean bung prior to	
accessing line.	

Dialysis CVC Exit Site Care - Additional Device Specific Information:

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 31 of 36
See the Intranet for latest version Version Number		er:6

Action	Rationale
The CVC must be checked for efficient blood withdrawal prior to use – withdrawal occlusion must be reported to medical staff and dealt with promptly Extracorporeal CVCs must be locked with 1000units/ml Heparin or Alteplase, in a volume equal to that printed on the lumen	To achieve effective dialysis good blood flows need to be achieved via the CVC so full patency is essential Refer to Appendix 12 To maintain patency
2ml must be aspirated from the line prior to use. When not in use Extracorporeal CVCs will require a weekly flush regime. The lines should be aspirated, flushed with sodium chloride 0.9% and each lumen locked to the dead space volume stated on the line with heparin 1000units/ml.	To avoid line lock being flushed into the patient's systemic bloodstream To maintain patency
A needle free device known as a Tego or Bionector bung must be used on all extracorporeal therapies. These must be changed weekly.	Opening a CVC line intermittently increases the risk of infection, whereas accessing via a needle free device maintains a closed-circuit reducing infection risk.
Document Tego/Bionnector connector changes on VIP, Haemodialysis Prescription and in nursing notes Tego Bung information	To monitor and reduce risk of infection <u>http://www.icumed.com/products/specialt y/renal-systems/tego-connector.aspx</u>

Sampling

Dialysis CVC Blood Sampling - Additional Device Specific Information:

Action	Rationale
Aseptic Non-Touch Technique (ANTT)	To reduce risk of infection
must be used when accessing the CVC	
Attach a dry 10ml syringe to the CVC,	To remove line lock and check for clots.
remove 2ml from the line and discard	
Attach a new 10ml syringe, gently	To eliminate contaminates
withdraw 5ml of blood and flush in and out	To obtain non-diluted blood sample
of the CVC 5 times, before taking required	To reduce quantity of blood discarded
blood sample amount.	Push and pull gently to reduce haemolysis
HAEMODIALYSIS PATIENTS ONLY	
Flush line with 5ml 0.9% sodium chloride	To maintain line patency
prior to commencing dialysis or locking line	
with appropriate anticoagulant.	
*Please refer to trust ANTT policy	

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 32 of 36
See the Intranet for latest version Version Number		er:6

N.B – The use of this appendix should be discussed with the dialysis nursing team and/or paediatric nephrology consultants before use.

Routine lumen line locks

Following completion of each dialysis session, the following procedure should be followed:

- Each catheter lumen must be flushed with 5mLs of 0.9% sodium chloride.
- Each catheter lumen should be locked with either heparin 1000unnits/mL or alteplase (see below).

Heparin 1000unit/mL line lock

Instil the exact volume of the catheter lumen with heparin 1000 units/mL. Aspirate and discard heparin before each dialysis session. This should be prescribed on the regular section of the drug chart.

Note: lumen volumes vary depending on line manufacturer and can be found detailed on the lumen.

Alteplase line lock

Instil the exact volume of the catheter lumen with Actilyse Cathflo (t-PA / alteplase) 2mg vials. Reconstitute with 2.2mL of water for injections to make a final concentration of 1mg/mL. Instil the exact volume of the catheter lumen (to a maximum dose of 2mg). This process must be completed on the two-day gap.

Suspected occlusions of Haemodialysis catheters

Early flow problems are often related to technical problems at the time of insertion. Common causes of early flow problems include:

- Catheter tip malposition
- Catheter tip mal-rotation (catheter tip abutting against vessel wall)
- Catheter located in the wrong vessel
- Catheter kinking

Delayed malfunction usually reflects thrombus either within the catheter or around the catheter tip. Thrombus may progress on to form fibrinous tissue surrounding the catheter – a fibrin sheath. The fibrin sheath often acts as a one-way valve, permitting infusion of fluid, but not aspiration of blood.

Other causes of delayed malfunction:

- Intraluminal clot or catheter-related thrombosis
- Intraluminal drug precipitate
- "Pinch-off"
- Suture constriction
- Catheter rupture

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 33 of 36
See the Intranet for latest version Version Number		er:6

• Port needle dislodgement / malposition or fibrin in port reservoir

If there is a suspected occlusion, firstly check for any kinks in the catheter tubing or lumen. Also check whether the lumens are still clamped off and require unclamping. Dressings may be removed if necessary to examine the catheter tubing and lumens.

Management of suspected occlusion of Haemodialysis Catheters:

- Ask the patient to lie flat with their neck extended.
- Using a 5 mL luer lock syringe flush the catheter with 2mL of 0.9% sodium chloride.
- If possible, pull back into the syringe and check for any clots.

If flushing and pull back successful, continue with normal dialysis.

If unsuccessful, follow guidelines for total occlusion.

See page 33 for summary of occlusion management.

Investigations to be considered.

Patients with total or partial occlusion concerns who are requiring alteplase may require the following investigations:

- Chest radiograph to check position of line
- Echocardiogram to visualise clots at tip of line
- Linogram to establish any clots around catheter and position

Total occlusion of Haemodialysis catheters

- 1. Alteplase line lock (see below). Instil the exact volume of alteplase into the catheter lumen (to a maximum dose of 2mg) and leave for 1 to 2 hours.
- 2. Aspirate volume instilled and attempt dialysis.
- 3. If flow is poor on the machine or still difficult to aspirate and dialysis has been completed, instil the exact volume of alteplase in each lumen once again and leave until next haemodialysis session (long dwell).
- 4. If dialysis is not achieved, a medical review is required before deciding to omit a session of dialysis. Following medical review, the exact volume of alteplase may be instilled into each lumen and left until the next haemodialysis session.
- 5. If after the above regime the flows remain poor on the machine, the patient will need an alteplase infusion (see below).
- 6. If patient continues with access problems, consider alteplase line locks after each haemodialysis session. This will need to be prescribed on the drug chart.
- 7. All treatments for occlusion will be reviewed at the haemodialysis weekly review meeting.

Alteplase line lock for Haemodialysis Catheters

Use Actilyse Cathflo (t-PA/alteplase) 2mg vials.

Reconstitute with 2.2mL of water for injections to make a final concentration of 1mg/mL.

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 34 of 36
See the Intranet for latest version Version Number:6		er:6

Instil the exact volume of the catheter lumen (to a maximum dose of 2mg) and leave for 1-2 hours or until the next dialysis session as per step 3 above.

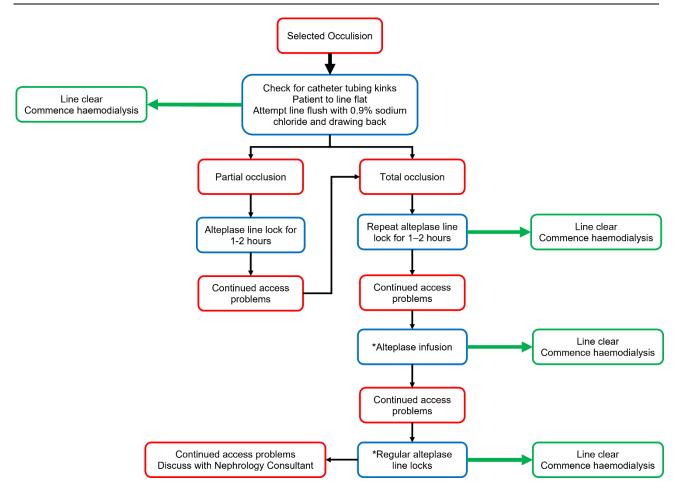
Alteplase infusion for unblocking haemodialysis catheters

A dose of **0.01mg/kg/hr** should be infused through each lumen of the haemodialysis catheter for 4-6 hours. Make up a syringe for each catheter lumen using the following dosing table:

Patient Weight (kg)	Dose (mg) to be added to 10mL of 0.9% Sodium Chloride	Rate to be ran at (mL/hr)
10 to 19kg	0.2 x weight (kg)	0.5mL/hr
20 to 100kg	0.1 x weight (kg)	1mL/hr

Monitor Early Warning Score (EWS) every 30 minutes. Seek urgent medical review if the patient shows signs of bleeding or increasing EWS (e.g. Amber [score of 2-3] to Red [score of 4 or more]); stop the infusion in the interim.

Partial occlusion of Haemodialysis Catheters


- 1. Use Heparin 1000unit/mL line lock.
- 2. If patient continue to experience access problems, follow management of total occlusion guidance and consider alteplase line locks after each dialysis session.

Other medication

Consider aspirin, warfarin or other anti-platelet drugs if flow problems persist. Use of these medications must first be discussed with the Consultant Nephrologist.

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 35 of 36
See the Intranet for latest version Version Numb		er:6

Summary of Haemodialysis Catheter Occlusion Management

Central Venous Catheters (CVCs): Guidelines for their management in children		Page 36 of 36
See the Intranet for latest version Version Numb		er:6